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Abstract
Glutathione reductase (GR, type IV, Baker’s yeast, E.C 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent
reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH). In this study some metal ions have been tested on
GR; lithium, manganese, molybdate, aluminium, barium, zinc, calcium, cadmium and nickel. Cadmium, nickel and calcium
showed a good to moderate inhibitory effect on yeast GR. GR is inhibited non-competitively by Zn2þ (up to 2 mM) and
activated above this concentration. Ca2þ inhibition was non-competitive with respect to GSSG and uncompetitive with
respect to NADPH. Nickel inhibition was competitive with respect to GSSG and uncompetitive with respect to NADPH. The
inhibition constants for these metals on GR were determined. The chelating agent EDTA recovered 90% of the GR activity
inhibited by these metals.
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Introduction

Glutathione reductase (E.C 1.6.4.2) is a pivotal

enzyme of the antioxidant system in the cells [1]

which utilize molecular oxygen and generate highly

reactive oxygen-derived free radicals. Endogenous

cellular oxidants inactivate oxidant free radicals and

protect aerobic cells from oxidant injury. Glutathione

reductase (GR) and superoxide dismutase are key

components of this antioxidant defence and inhibition

of these antioxidant components would be expected to

result in cell injury [2]. GR has a central role in

glutathione (GSH) metabolism and as such is a

potential target for chemotherapy [3]. Metal ions have

diverse functions on organisms and a number of

metals which act as a prosthetic group for enzymes

and are activators and some are inhibitors. Zn2þ is a

trace element known to be an essential nutrient for life

and functions as a cofactor for numerous enzymes [4].

However, excess in Zn2þ the body interacts with

free thiol groups on macromolecules, so blocking the

active sites of enzymes, co-enzymes and membrane

receptors [5]. GR is an important factor in cellular

zinc susceptibility. Zn2þ toxicity has been linked to

decreased reduced GSH and increased GSSG con-

tents, which might be caused by GR inhibition by

Zn2þ [6]. 6-Phosphogluconate dehydrogenase, like

many fungal dehydrogenases, was inhibited by

Zn 2þ [7]. Ca2þ is the most abundant mineral in the

body and regulates many cellular process and has

important structural roles in living organisms [8].

However, overdoses of certain vitamins and minerals

can produce toxic effects as they are inhibitors of some

enzymes [9]. Ni2þ and Cd2þ are carcinogenic to

humans and/or animals, but the underlying mechan-

isms are poorly understood [10]. Ni2þ is well-known

inhibitor of Fe(II)/alpha-ketoglutarate (alphaKG)-

dependent hydroxylases [11], yeast hexokinase [12],

horseradish peroxidase [13] and microsomal epoxide

hydrolase [14]. Inhibition of some enzymes by

lithium, such as inositol monophosphatase and

glycogen synthase kinase-3, probably results in its

mood-stabilizing effects [15]. Mn2þ is an important

trace element and may be essential for some
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metalloenzymes [16]. Anaemia, one consequence of

Al3þ toxicity, may be due to inhibition of delta-ALA

dehydratase which occurs in the heme biosynthetic

pathway [17]. The ability of Al3þ to inhibit (Naþ/Kþ)

ATPase activity has been observed by several

investigators [18].

The present study aims at investigating the

influence of Liþ, Mn2þ , Mo6þ , Al3þ , Ba2þ , Zn2þ ,

Ca2þ and Ni2þ on the activity of Saccharomyces

cerevisiae GR as well as the kinetic behaviour and type

of inhibition of GR inhibition observed.

Materials and methods

Materials

Nicotinamide adenine dinucleotide phosphate

reduced form (NADPH), oxidized glutathione

(GSSG), Baker’s yeast glutathione reductase (specific

activity 1.25 U/mg), barium acetate and calcium

chloride were obtained from Sigma Chemical Co.,

MO, USA. Nickel sulphate was obtained from

NEEDHAM project. Zinc sulphate was obtained as

ANALAR (Hopkin & Williams Ltd). EDTA was

obtained from SERVA Feinbiochemica GmbH & Co.

Aluminium chloride, Lithium carbonate, were from

Fischer; Manganese (MnSO4) from Merck and

Molybdenum (Na2MoO4) from BDH Chemicals Ltd.

Assay of glutathione reductase activity

Glutathione reductase activity was determined

according to the modified Stall method [19]. The

incubation mixture contained 100 mM sodium phos-

phate buffer, pH 7.4, 1 mM GSSG, 200 mM NADPH

and Baker’s yeast glutathione reductase. Decrease in

the absorbance of NADPH at 340 nm was monitored

spectrophotometrically, at 378C. Assays were carried

out in duplicate and the activities were followed for

40 s. The reaction was linear during this time period.

A unit of activity (U) was defined as the amount of

enzyme that catalyses the oxidation of 1mmole of

NADPH in 1 min under these conditions. Specific

activity is defined as units per mg of protein.

Inhibition studies

Activities were measured after adding different

concentrations Liþ, Mn2þ , Mo6þ , Al3þ , Ba2þ ,

Zn2þ , Ca2þ and Ni2þ to the assay mixture given

above for glutathione reductase measurement. Assays

of GR in the presence of heavy metal ions were

performed without enzyme-inhibitor preincubation in

that the reactions were initiated by adding enzyme to

the substrate-inhibitor mixture.

Recovery of glutathione reductase activity

EDTA (0–12 mM) concentrations were added to the

above assay mixtures containing 2.5 mM CaCl2,

2 mM ZnSO4, and 1 mM NiSO4, respectively, and

the initial velocities were determined.

Statistical analysis of kinetic data

The data were analyzed and the kinetic constants were

calculated using the following equations [20] by

means of a nonlinear curve-fitting program of

Statistica.

Michaelis 2 Menten equation :

V ¼ Vm*½S�=Km þ ½S�
ð1Þ

Non-competitive inhibition :

V ¼ ðVm*S=ð1 þ I=KiÞÞ=ðKm þ SÞ
ð2Þ

Uncompetitive inhibiton :

V ¼ Vm*S=ð1 þ I=KiÞÞ=ðKm=ð1 þ I=KiÞ þ SÞ
ð3Þ

Pure competitive inhibition :

V ¼ Vm*S=ðKs*ð1 þ I=KiÞ þ SÞ
ð4Þ

where V ¼ Reaction rate, [S] ¼ Substrate concen-

tration, Vm ¼ Maximum rate, and Km ¼

Michaelis-Menten constant (substrate concentration

at half the maximal velocity (Vm)).

Results

In this study we have investigated the effects of several

metal ions on Baker’s yeast glutathione reductase. The

values of the kinetic parameters of GR in a non-

inhibited reaction were determined as KmGSSG

90 ^ 12mM, Km NADPH 30 ^ 4mM. In other kinetics

studies, yeast GR KmGSSG and KmNADPH values were

found to be 55mM and 3.8mM respectively [21]. The

E.coli GR values were KmGSSG 97 ^ 12mM and Km

NADPH 22 ^ 2mM [22], Cyanobacterium Anabaena

sp. Strain 7119 GR values were KmGSSG 210mM, Km

NADPH 9.4mM [23] and rat liver values were KmGSSG

56.7 ^ 0.4mM, Km NADPH 7.9 ^ 0.6mM [24].

The inhibition kinetics of Saccharomyces cerevisiae

GR was studied without enzyme-inhibitor pre-

incubation.

We found that some metals Liþ, Mn2þ , Mo6þ ,

Al3þ , Ba2þ had no effect the GR activity but Cd2þ ,

Ni2þ and Ca2þ inhibited the enzyme in a concen-

tration-dependent manner with IC50 values of 0.025,

0.8 and 5 mM respectively. Whereas zinc was both an

inhibitor and activator of the enzyme. We established
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that yeast GR is inhibited by Zn2þ (0.1–2 mM) and

activated above this concentration (2.5–5 mM). The

IC50 value of Zn2þ could not be determined because

at 2 mM Zn2þ concentration the enzyme lost its

activity by 36% and above this concentration GR was

activated in a concentration-dependent manner (i.e.

3.5 fold at 5 mM Zn2þ concentration). Kinetic

characterization of the inhibition effects of Zn2þ on

GR from Saccharomyces cerevisiae have been investi-

gated and no inhibitory effect was found with

Zn2þ (30–90mM concentration) on this enzyme

[25]. The obtained IC50 values of calcium are 5 mM,

and nickel 0.8 mM and Yeast GR is inhibited by

much lower concentrations of Cd2þ ion than the

other metals (IC50 of Cd2þ is 0.025 mM). Cd2þ is a

very potent enzyme inhibitor; it inhibits many

enzymes such as in our previous study we have

reported that Cd2þ is also a potent inhibitor of

glucose-6-phosphate dehydrogenase (G-6-PD) from

lamb kidney cortex [26].

The kinetic characterization of the inhibitory

effects of these metals on GR was also investigated.

Kinetic characterization of the inhibition of ZnSO4

on GR is shown in Figures 1 and 2; the inhibition

Figure 1. Lineweaver-Burk double reciprocal plot of initial velocity against GSSG as varied substrate and ZnSO4 (0.05–1 mM) as inhibitor

at a fixed NADPH (0.1 mM) concentration. *0.1 mM NADPH (constant); A 0.05 mM ZnSO4 ;W 0.1 mM ZnSO4; D 0.5 mM ZnSO4; S1 mM

ZnSO4.

Figure 2. Lineweaver-Burk double reciprocal plot of initial velocity against NADPH as varied substrate and ZnSO4 (0.05–1 mM) as

inhibitor at different fixed GSSG (0.7 mM) concentrations. S 0.7 mM GSSG (constant); A 0.05 mM ZnSO4;D 0.1 mM ZnSO4;*0.5 mM

ZnSO4;W 1 mM ZnSO4.
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is non-competitive with respect to both GSSG and

NADPH with KiGSSG 0.476 ^ 0.085 mM and

KiNADPH 0.96 ^ 0.134 mM. Zn2þ , at low levels, has

several basic housekeeping functions in metallo-

enzymes, transcription factors, immunoregulation,

growth, and cytoprotection, displaying antioxidant,

anti-apoptotic, and anti-inflammatory roles. At

high levels, however, the metal can be highly

toxic [27]. Toxic doses of Zn2þ inhibit intestinal

alkaline phosphatase [28], mitochondrial cytochrome c

oxidase [29], glyceraldehyde-3-phosphate dehydrogen-

ase [30], beta amylase [31] and G-6-PD from lamb

kidney cortex [26]. Zn2þ homeostasis in bacteria is

achieved by export systems and uptake systems which

are separately regulated by their own regulators.

Three types of Zn2þ export systems that protect cells

from high toxic concentrations of Zn2þ have been

identified [32].

Kinetic characterization of the inhibition effects of

CaCl2 on glutathione reductase is shown in Figures 3

Figure 3. Lineweaver-Burk double reciprocal plot of initial velocity against GSSG as varied substrate and CaCl2 (0.8–1.6 mM) as inhibitor

at a fixed NADPH (0.1 mM) concentrations. *0.1 mM NADPH (constant); A 0.8 mM CaCl2; W 1 mm CaCl2; D 1.2 mM CaCl2; S1.6 mM

CaCl2.

Figure 4. Lineweaver-Burk double reciprocal plot of initial velocity against NADPH as varied substrate and CaCl2 (0.8–1.6 mM) as

inhibitor at different fixed GSSG (0.7 mM) concentrations. S 0.7 mM GSSG (constant); A 0.8 mM CaCl2; D 1 mm CaCl2; *1.2 mM CaCl2;

W 1.6 mM CaCl2.
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and 4; the inhibition is non-competitive with

respect to GSSG and uncompetitive with respect to

NADPH with KiGSSG 1.476 ^ 0.195 mM and

KiNADPH 2.993 ^ 0.227 mM respectively. Ca2þ is

essential to maintaining total body health although

high levels of Ca2þ may be harmful. Hypercalcemia

may also provoke acute renal failure or hypertension,

or aggravate tubular necrosis [33].

Nutrient minerals are essential yet are potentially

toxic and homeostatic mechanisms are required to

regulate their intracellular levels [34]. Although Ni2þ

is an essential cofactor for a number of enzymatic

reactions in prokaryotes and eukaryotes [35], this

metal ion can inhibit GR in a concentration-

dependent manner. Ni 2þ is a widely distributed

metal that is industrially applied in many forms.

Accumulated epidemiological evidence confirms that

occupational exposures to nickel compounds are

mostly associated with increased nasal and lung

cancer incidence [36]. DNA damage in the form of

strand breaks and DNA-protein cross-links resulted

in vivo following injection of nickel carbonate in rats

Figure 5. Lineweaver-Burk double reciprocal plot of initial velocity against GSSG as varied substrate and NiSO4 (0.1–0.4 mM) as inhibitor

at different fixed NADPH (0.1 mM) concentrations. *0.1 mM NADPH (constant); W 0.1 mM NiSO4; A 0.2 mM NiSO4; D 0.3 mM NiSO4; S

0.4 mM NiSO4.

Figure 6. Lineweaver-Burk double reciprocal plot of initial velocity against NADPH as varied substrate and NiSO4 (0.1–0.4 mM) as

inhibitor at different fixed GSSG (0.7 mM) concentrations. S 0.7 mM GSSG (constant); A 0.1 mM NiSO4; D 0.2 mM NiSO4; *0.3 mM

NiSO4; W 0.4 mM NiSO4.
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[37]. The interaction between Ni2þ and yeast

hexokinase has been studied and kinetic studies

showed that Ni2þ caused a non-competitive inhi-

bition when glucose was the variable substrate and

competitive inhibition when ATP was the variable

substrate [12]. Here, we found that Ni2þ was an

inhibitor of GR giving to a competitive inhibition

pattern when GSSG (Figure 5) was the varied

substrate and uncompetitive pattern when NADPH

(Figure 6) was the varied substrate.

EDTA is a chelating agent that binds divalent metal

ions. When the divalent metals are chelated by the

EDTA the toxic effects are lost. We suggest that

EDTA has a recovering role in inhibition of yeast

GR with metal ions and we found that when EDTA

(0–12 mM) concentrations are added to the assay

mixtures containing 2.5 mM CaCl2, 2 mM ZnSO4

and 1 mM NiSO4, respectively, GR activity was

recovered by approximately 90%.

Conclusions

We have found that Zn2þ , Ca2þ and Ni2þ ions are

potent inhibitor of baker’s yeast GR. This is probably

due to the interactions of the metal ions with

aminoacids of the enzyme. GR was inhibited with

NiSO4 competitively with respect to GSSG, so there

may be a competition between substrate GSSG and

Ni2þ ions for the active site of this enzyme. A non-

competitive inhibitor may bind to a non-substrate

binding site on a protein and distort it to the point of

non-functionality [20]. The inhibition of GR with

ZnSO4 was found non-competitive.

Glutathione reductase is a important enzyme that

catalyzes the reduction of GSSG using NADPH as

a cofactor. The enzyme is a major component of

cellular defense mechanisms against oxidative injury

[38] and is an attractive target for the development of

antimalarial agents, agents to decrease malarial drug

resistance and anticancer agents. In addition, inhi-

bition of the enzyme has been employed as a tool in

research for various purposes [39]. Investigation of the

inhibitors of this enzyme is important for antimalarial

and anticancer researches. Because of GR is a crucial

enzyme in the antioxidant system, this study may be

useful for understanding the mechanisms for oxidative

damage associated with heavy metal toxicity.
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